Modular Energy Storage Architecture (MESA)

PNUCC Board of Directors Meeting

June 7, 2013

Agenda

- Energy storage from utility’s perspective
 - Tremendous potential: integrate renewables, multiple use cases
 - Significant challenges: supply chain too costly, no standards
- Opportunity for software/IT expertise in Northwest
 - Transform the energy storage market through development of software/IT standards
 - Become industry center of gravity for energy storage
- Example: Snohomish PUD MESA project
 - Software by 1Energy Systems (Seattle) & Alstom (Redmond)
Challenge: Meet load growth and renewable portfolio standard requirements without the use of fossil fuels.

Wind Variability

Snohomish’s Aggregated Wind
No Diversity

Grid Energy Storage

- Storage potentially has many energy and power uses:
 - Variable energy resource integration
 - Peak shaving
 - Volt/VAR support
 - Infrastructure upgrade deferral
 - Frequency regulation

- Large scale hydro and pumped hydro storage facilities have dominated the storage landscape
 - Limited options geographically and environmentally

- Batteries are beginning to enable smaller and more modular/scalable energy storage systems
Current State

- Current battery-based grid energy storage offerings
 - Expensive
 - Lack modularity
 - Lack interoperability
 - Lack scalability
 - Lack standardization
 - Monolithic; vendors operate beyond core expertise

- Large gap between battery manufacturers and utilities
 - Core suppliers cannot easily serve core customers

Opportunity

- Implications:
 - Utility market for significant-scale battery based storage is very small and slow growing
 - Projects to-date are either highly optimized one-off niche projects, or small learning/demonstration projects
 - Decreasing battery prices alone are unlikely to stimulate utility energy storage market growth significantly
 - EPRI, battery manufactures, and others see the same landscape, but there is little apparent activity to facilitate change

- Opportunity: focus on architecture and standardization
 - Develop and deploy “Modular Energy Storage Architecture” (MESA)
Project Organization

MESA Project

Technology Transforming the Energy Storage Market
The Vision

- Energy storage = **flexibility**
 - Clean renewable power integration
 - Many grid management applications
- Significant growth projected
 - **94% of utilities**: energy storage very/somewhat important to smart grid development\(^1\)
 - **4x growth** in next 5 years ($3.5B to $18.5B)\(^2\)

\(^1\) Nov. 2012, IEEE Smart Grid, with analysis by Zprime
\(^2\) July 2011, BCC Research, *Utility-Scale Electricity Storage Technologies: Global Markets*

The Problem

- Supply chain challenges:
 - Expensive
 - Monolithic: limited interoperability
 - Proprietary: few standards, one-off projects

- Consequences of deficient standardization:
 - Suppliers (battery, PCS) can’t easily serve utilities
 - Vendors operating beyond core expertise (e.g. A123)
 - Unmanageable infrastructure for utilities
 - Growth limited, despite willing buyers and sellers
Comparison

<table>
<thead>
<tr>
<th>CES</th>
<th>Nissan Leaf</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 25 kWh Li-ion battery</td>
<td>• 24 kWh Li-ion battery</td>
</tr>
<tr>
<td>• ~$100k</td>
<td>• $35k</td>
</tr>
<tr>
<td></td>
<td>• Plus a car</td>
</tr>
</tbody>
</table>

WA Opportunity – Jobs

• Batteries?
 – World’s major producers are in Korea, Japan, China
 – US-based bankruptcies:
 • A123 (batteries): $249 million US govt. investment
 • Ener1 (batteries): $199 million US govt. investment
 • Beacon Power (flywheel): $39 million US govt. investment

• Energy storage software/IT
 – WA state’s best asset: high-tech knowledge workers
 – Ideally suited to create infrastructure for energy storage and smart grid
MESA-1 Project

Partners
• Snohomish County PUD
• 1Energy Systems
• Alstom Grid
• Univ. of Washington
• Parker Hannifin (PCS, BOS)
• Battery partners

Outcomes
• 1 MW substation ESS
• Plug-and-play components
• Standards (IEEE, IEC)
• Shared learning
• Transform the market

Standards within the ESS

• Utilities want:
 – Standard components
 – Install, operate, maintain, upgrade, expand, ...
 – Functional, cost-effective supply chain

Analogy: PC Industry

ESS \leftrightarrow {battery, PCS, ...}
Standards from ESS to Utility I/T

Utilities want:

- Standard interfaces between ESS and utility I/T (control, power supply, etc.)
- Interoperability
- Range of ESS sizes and sites (SES, CES, DES, etc.)

Analogy: Internet Protocols

1Energy Systems

ESS Components

- Energy (ESU)
- Power (PCU)
- Framework (container, etc.)
- EPC Services

Software

- Component mgmt (ESU, PCU)
- Modes: economic dispatch, r/e firming, peak shaving, load following, etc.
- Optimization
MESA: Transforming the Market

MESA Goals
- Transform energy storage market through **technology**
- Give utilities real **flexibility**
- Foster robust energy storage **market**

MESA-WA Goals
- Reach "**tipping point**" of battery/PCS companies supporting an open standard
- Multiple WA utilities deploying energy storage
- Actual projects to increase renewable integration
- Make WA the the **industry center of gravity** for energy storage